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PREFACE

The fourth edition of this book differs from the third edition in numerous ways.
There are large numbers of small changes everywhere to bring the material up to
date as operating systems are not standing still. The chapter on Multimedia Oper-
ating Systems has been moved to the Web, primarily to make room for new mater-
ial and keep the book from growing to a completely unmanageable size. The chap-
ter on Windows Vista has been removed completely as Vista has not been the suc-
cess Microsoft hoped for. The chapter on Symbian has also been removed, as
Symbian no longer is widely available. However, the Vista material has been re-
placed by Windows 8 and Symbian has been replaced by Android. Also, a com-
pletely new chapter, on virtualization and the cloud has been added. Here is a
chapter-by-chapter rundown of the changes.

• Chapter 1 has been heavily modified and updated in many places but
with the exception of a new section on mobile computers, no major
sections have been added or deleted.

• Chapter 2 has been updated, with older material removed and some
new material added. For example, we added the futex synchronization
primitive, and a section about how to avoid locking altogether with
Read-Copy-Update.

• Chapter 3 now has more focus on modern hardware and less emphasis
on segmentation and MULTICS.

• In Chapter 4 we removed CD-Roms, as they are no longer very com-
mon, and replaced them with more modern solutions (like flash
drives). Also, we added RAID level 6 to the section on RAID.

xxiii
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• Chapter 5 has seen a lot of changes. Older devices like CRTs and CD-
ROMs have been removed, while new technology, such as touch
screens have been added.

• Chapter 6 is pretty much unchanged. The topic of deadlocks is fairly
stable, with few new results.

• Chapter 7 is completely new. It covers the important topics of virtu-
alization and the cloud. As a case study, a section on VMware has
been added.

• Chapter 8 is an updated version of the previous material on multiproc-
essor systems. There is more emphasis on multicore and manycore
systems now, which have become increasingly important in the past
few years. Cache consistency has become a bigger issue recently and
is covered here, now.

• Chapter 9 has been heavily revised and reorganized, with considerable
new material on exploiting code bugs, malware, and defenses against
them. Attacks such as null pointer dereferences and buffer overflows
are treated in more detail. Defense mechanisms, including canaries,
the NX bit, and address-space randomization are covered in detail
now, as are the ways attackers try to defeat them.

• Chapter 10 has undergone a major change. The material on UNIX and
Linux has been updated but the major addtion here is a new and
lengthy section on the Android operating system, which is very com-
mon on smartphones and tablets.

• Chapter 11 in the third edition was on Windows Vista. That has been
replaced by a chapter on Windows 8, specifically Windows 8.1. It
brings the treatment of Windows completely up to date.

• Chapter 12 is a revised version of Chap. 13 from the previous edition.

• Chapter 13 is a thoroughly updated list of suggested readings. In addi-
tion, the list of references has been updated, with entries to 223 new
works published after the third edition of this book came out.

• Chapter 7 from the previous edition has been moved to the book’s
Website to keep the size somewhat manageable).

• In addition, the sections on research throughout the book have all been
redone from scratch to reflect the latest research in operating systems.
Furthermore, new problems have been added to all the chapters.

Numerous teaching aids for this book are available. Instructor supplements
can be found at www.pearsonglobaleditions.com/Tanenbaum They include
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PowerPoint sheets, software tools for studying operating systems, lab experiments
for students, simulators, and more material for use in operating systems courses.
Instructors using this book in a course should definitely take a look. The Compan-
ion Website for this book is also located at www.pearsonglobaleditions.com/Tanen-
baum . The specific site for this book is password protected. To use the site, fol-
low the instructions on the student access card that came with your text to create a
user account and log in. Student resources include:

• An online chapter on Multimedia Operating Systems

• Lab Experiments

• Online Exercises

• Simulation Exercises

A number of people have been involved in the fourth edition. First and fore-
most, Prof. Herbert Bos of the Vrije Universiteit in Amsterdam has been added as
a coauthor. He is a  security, UNIX, and all-around systems expert and it is great to
have him on board. He wrote much of the new material except as noted below.

Our editor, Tracy Johnson, has done a wonderful job, as usual, of herding all
the cats, putting all the pieces together, putting out fires, and keeping the project on
schedule. We were also fortunate to get our long-time production editor, Camille
Trentacoste, back. Her skills in so many areas have sav ed the day on more than a
few occasions. We are glad to have her again after an absence of several years.
Carole Snyder did a fine job coordinating the various people involved in the book.

The material in Chap. 7 on VMware (in Sec. 7.12) was written by Edouard
Bugnion of EPFL in Lausanne, Switzerland. Ed was one of the founders of the
VMware company and knows this material as well as anyone in the world. We
thank him greatly for supplying it to us.

Ada Gavrilovska of Georgia Tech, who is an expert on Linux internals, up-
dated Chap. 10 from the Third Edition, which she also wrote. The Android mater-
ial in Chap. 10 was written by Dianne Hackborn of Google, one of the key dev el-
opers of the Android system. Android is the leading operating system on smart-
phones, so we are very grateful to have Dianne help us. Chap. 10 is now quite long
and detailed, but UNIX, Linux, and Android fans can learn a lot from it. It is per-
haps worth noting that the longest and most technical chapter in the book was writ-
ten by two women. We just did the easy stuff.

We hav en’t neglected Windows, however. Dav e Probert of Microsoft updated
Chap. 11 from the previous edition of the book. This time the chapter covers Win-
dows 8.1 in detail. Dave has a great deal of knowledge of Windows and enough
vision to tell the difference between places where Microsoft got it right and where
it got it wrong. Windows fans are certain to enjoy this chapter.

The book is much better as a result of the work of all these expert contributors.
Again, we would like to thank them for their invaluable help.
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We were also fortunate to have sev eral reviewers who read the manuscript and
also suggested new end-of-chapter problems. These were Trudy Levine, Shivakant
Mishra, Krishna Sivalingam, and Ken Wong. Steve Armstrong did the PowerPoint
sheets for instructors teaching a course using the book.

Normally copyeditors and proofreaders don’t get acknowledgements, but Bob
Lentz (copyeditor) and Joe Ruddick (proofreader) did exceptionally thorough jobs.
Joe in particular, can spot the difference between a roman period and an italics
period from 20 meters. Nevertheless, the authors take full responsibility for any
residual errors in the book. Readers noticing any errors are requested to contact
one of the authors.

Finally, last but not least, Barbara and Marvin are still wonderful, as usual,
each in a unique and special way. Daniel and Matilde are great additions to our
family. Aron and Nathan are wonderful little guys and Olivia is a treasure. And of
course, I would like to thank Suzanne for her love and patience, not to mention all
the druiven, kersen, and sinaasappelsap, as well as other agricultural products.
(AST)

Most importantly, I would like to thank Marieke, Duko, and Jip. Marieke for
her love and for bearing with me all the nights I was working on this book, and
Duko and Jip for tearing me away from it and showing me there are more impor-
tant things in life. Like Minecraft. (HB)

Andrew S. Tanenbaum
Herbert Bos
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1
INTRODUCTION

A modern computer consists of one or more processors, some main memory,
disks, printers, a keyboard, a mouse, a display, network interfaces, and various
other input/output devices. All in all, a complex system.oo If every application pro-
grammer had to understand how all these things work in detail, no code would ever
get written. Furthermore, managing all these components and using them optimally
is an exceedingly challenging job. For this reason, computers are equipped with a
layer of software called the operating system, whose job is to provide user pro-
grams with a better, simpler, cleaner, model of the computer and to handle manag-
ing all the resources just mentioned. Operating systems are the subject of this
book.

Most readers will have had some experience with an operating system such as
Windows, Linux, FreeBSD, or OS X, but appearances can be deceiving. The pro-
gram that users interact with, usually called the shell when it is text based and the
GUI (Graphical User Interface)—which is pronounced ‘‘gooey’’—when it uses
icons, is actually not part of the operating system, although it uses the operating
system to get its work done.

A simple overview of the main components under discussion here is given in
Fig. 1-1. Here we see the hardware at the bottom. The hardware consists of chips,
boards, disks, a keyboard, a monitor, and similar physical objects. On top of the
hardware is the software. Most computers have two modes of operation: kernel
mode and user mode. The operating system, the most fundamental piece of soft-
ware, runs in kernel mode (also called supervisor mode). In this mode it has

1



2 INTRODUCTION CHAP. 1

complete access to all the hardware and can execute any instruction the machine is
capable of executing. The rest of the software runs in user mode, in which only a
subset of the machine instructions is available. In particular, those instructions that
affect control of the machine or do I/O )Input/Output" are forbidden to user-mode
programs. We will come back to the difference between kernel mode and user
mode repeatedly throughout this book. It plays a crucial role in how operating sys-
tems work.

Hardware

Software
User mode

Kernel mode Operating system

Web
browser

E-mail
reader

Music
player

User interface program

Figure 1-1. Where the operating system fits in.

The user interface program, shell or GUI, is the lowest level of user-mode soft-
ware, and allows the user to start other programs, such as a Web browser, email
reader, or music player. These programs, too, make heavy use of the operating sys-
tem.

The placement of the operating system is shown in Fig. 1-1. It runs on the
bare hardware and provides the base for all the other software.

An important distinction between the operating system and normal (user-
mode) software is that if a user does not like a particular email reader, he† is free to
get a different one or write his own if he so chooses; he is not free to write his own
clock interrupt handler, which is part of the operating system and is protected by
hardware against attempts by users to modify it.

This distinction, however, is sometimes blurred in embedded systems (which
may not have kernel mode) or interpreted systems (such as Java-based systems that
use interpretation, not hardware, to separate the components).

Also, in many systems there are programs that run in user mode but help the
operating system or perform privileged functions. For example, there is often a
program that allows users to change their passwords. It is not part of the operating
system and does not run in kernel mode, but it clearly carries out a sensitive func-
tion and has to be protected in a special way. In some systems, this idea is carried
to an extreme, and pieces of what is traditionally considered to be the operating
† ‘‘He’’ should be read as ‘‘he or she’’ throughout the book.
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system (such as the file system) run in user space. In such systems, it is difficult to
draw a clear boundary. Everything running in kernel mode is clearly part of the
operating system, but some programs running outside it are arguably also part of it,
or at least closely associated with it.

Operating systems differ from user (i.e., application) programs in ways other
than where they reside. In particular, they are huge, complex, and long-lived. The
source code of the heart of an operating system like Linux or Windows is on the
order of fiv e million lines of code or more. To conceive of what this means, think
of printing out fiv e million lines in book form, with 50 lines per page and 1000
pages per volume (larger than this book). It would take 100 volumes to list an op-
erating system of this size—essentially an entire bookcase. Can you imagine get-
ting a job maintaining an operating system and on the first day having your boss
bring you to a bookcase with the code and say: ‘‘Go learn that.’’ And this is only
for the part that runs in the kernel. When essential shared libraries are included,
Windows is well over 70 million lines of code or 10 to 20 bookcases. And this
excludes basic application software (things like Windows Explorer, Windows
Media Player, and so on).

It should be clear now why operating systems live a long time—they are very
hard to write, and having written one, the owner is loath to throw it out and start
again. Instead, such systems evolve over long periods of time. Windows 95/98/Me
was basically one operating system and Windows NT/2000/XP/Vista/Windows 7 is
a different one. They look similar to the users because Microsoft made very sure
that the user interface of Windows 2000/XP/Vista/Windows 7 was quite similar to
that of the system it was replacing, mostly Windows 98. Nevertheless, there were
very good reasons why Microsoft got rid of Windows 98. We will come to these
when we study Windows in detail in Chap. 11.

Besides Windows, the other main example we will use throughout this book is
UNIX and its variants and clones. It, too, has evolved over the years, with versions
like System V, Solaris, and FreeBSD being derived from the original system,
whereas Linux is a fresh code base, although very closely modeled on UNIX and
highly compatible with it. We will use examples from UNIX throughout this book
and look at Linux in detail in Chap. 10.

In this chapter we will briefly touch on a number of key aspects of operating
systems, including what they are, their history, what kinds are around, some of the
basic concepts, and their structure. We will come back to many of these important
topics in later chapters in more detail.

1.1 WHAT IS AN OPERATING SYSTEM?

It is hard to pin down what an operating system is other than saying it is the
software that runs in kernel mode—and even that is not always true. Part of the
problem is that operating systems perform two essentially unrelated functions:
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providing application programmers (and application programs, naturally) a clean
abstract set of resources instead of the messy hardware ones and managing these
hardware resources. Depending on who is doing the talking, you might hear mostly
about one function or the other. Let us now look at both.

1.1.1 The Operating System as an Extended Machine

The architecture (instruction set, memory organization, I/O, and bus struc-
ture) of most computers at the machine-language level is primitive and awkward to
program, especially for input/output. To make this point more concrete, consider
modern SATA (Serial ATA) hard disks used on most computers. A book (Ander-
son, 2007) describing an early version of the interface to the disk—what a pro-
grammer would have to know to use the disk—ran over 450 pages. Since then, the
interface has been revised multiple times and is more complicated than it was in
2007. Clearly, no sane programmer would want to deal with this disk at the hard-
ware level. Instead, a piece of software, called a disk driver, deals with the hard-
ware and provides an interface to read and write disk blocks, without getting into
the details. Operating systems contain many drivers for controlling I/O devices.

But even this level is much too low for most applications. For this reason, all
operating systems provide yet another layer of abstraction for using disks: files.
Using this abstraction, programs can create, write, and read files, without having to
deal with the messy details of how the hardware actually works.

This abstraction is the key to managing all this complexity. Good abstractions
turn a nearly impossible task into two manageable ones. The first is defining and
implementing the abstractions. The second is using these abstractions to solve the
problem at hand. One abstraction that almost every computer user understands is
the file, as mentioned above. It is a useful piece of information, such as a digital
photo, saved email message, song, or Web page. It is much easier to deal with pho-
tos, emails, songs, and Web pages than with the details of SATA (or other) disks.
The job of the operating system is to create good abstractions and then implement
and manage the abstract objects thus created. In this book, we will talk a lot about
abstractions. They are one of the keys to understanding operating systems.

This point is so important that it is worth repeating in different words. With all
due respect to the industrial engineers who so carefully designed the Macintosh,
hardware is ugly. Real processors, memories, disks, and other devices are very
complicated and present difficult, awkward, idiosyncratic, and inconsistent inter-
faces to the people who have to write software to use them. Sometimes this is due
to the need for backward compatibility with older hardware. Other times it is an
attempt to save money. Often, however, the hardware designers do not realize (or
care) how much trouble they are causing for the software. One of the major tasks
of the operating system is to hide the hardware and present programs (and their
programmers) with nice, clean, elegant, consistent, abstractions to work with in-
stead. Operating systems turn the ugly into the beautiful, as shown in Fig. 1-2.
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Figure 1-2. Operating systems turn ugly hardware into beautiful abstractions.

It should be noted that the operating system’s real customers are the applica-
tion programs (via the application programmers, of course). They are the ones
who deal directly with the operating system and its abstractions. In contrast, end
users deal with the abstractions provided by the user interface, either a com-
mand-line shell or a graphical interface. While the abstractions at the user interface
may be similar to the ones provided by the operating system, this is not always the
case. To make this point clearer, consider the normal Windows desktop and the
line-oriented command prompt. Both are programs running on the Windows oper-
ating system and use the abstractions Windows provides, but they offer very dif-
ferent user interfaces. Similarly, a Linux user running Gnome or KDE sees a very
different interface than a Linux user working directly on top of the underlying X
Window System, but the underlying operating system abstractions are the same in
both cases.

In this book, we will study the abstractions provided to application programs in
great detail, but say rather little about user interfaces. That is a large and important
subject, but one only peripherally related to operating systems.

1.1.2 The Operating System as a Resource Manager

The concept of an operating system as primarily providing abstractions to ap-
plication programs is a top-down view. An alternative, bottom-up, view holds that
the operating system is there to manage all the pieces of a complex system. Mod-
ern computers consist of processors, memories, timers, disks, mice, network inter-
faces, printers, and a wide variety of other devices. In the bottom-up view, the job
of the operating system is to provide for an orderly and controlled allocation of the
processors, memories, and I/O devices among the various programs wanting them.

Modern operating systems allow multiple programs to be in memory and run
at the same time. Imagine what would happen if three programs running on some
computer all tried to print their output simultaneously on the same printer. The first
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few lines of printout might be from program 1, the next few from program 2, then
some from program 3, and so forth. The result would be utter chaos. The operating
system can bring order to the potential chaos by buffering all the output destined
for the printer on the disk. When one program is finished, the operating system can
then copy its output from the disk file where it has been stored for the printer,
while at the same time the other program can continue generating more output,
oblivious to the fact that the output is not really going to the printer (yet).

When a computer (or network) has more than one user, the need for managing
and protecting the memory, I/O devices, and other resources is even more since the
users might otherwise interfere with one another. In addition, users often need to
share not only hardware, but information (files, databases, etc.) as well. In short,
this view of the operating system holds that its primary task is to keep track of
which programs are using which resource, to grant resource requests, to account
for usage, and to mediate conflicting requests from different programs and users.

Resource management includes multiplexing (sharing) resources in two dif-
ferent ways: in time and in space. When a resource is time multiplexed, different
programs or users take turns using it. First one of them gets to use the resource,
then another, and so on. For example, with only one CPU and multiple programs
that want to run on it, the operating system first allocates the CPU to one program,
then, after it has run long enough, another program gets to use the CPU, then an-
other, and then eventually the first one again. Determining how the resource is time
multiplexed—who goes next and for how long—is the task of the operating sys-
tem. Another example of time multiplexing is sharing the printer. When multiple
print jobs are queued up for printing on a single printer, a decision has to be made
about which one is to be printed next.

The other kind of multiplexing is space multiplexing. Instead of the customers
taking turns, each one gets part of the resource. For example, main memory is nor-
mally divided up among several running programs, so each one can be resident at
the same time (for example, in order to take turns using the CPU). Assuming there
is enough memory to hold multiple programs, it is more efficient to hold several
programs in memory at once rather than give one of them all of it, especially if it
only needs a small fraction of the total. Of course, this raises issues of fairness,
protection, and so on, and it is up to the operating system to solve them. Another
resource that is space multiplexed is the disk. In many systems a single disk can
hold files from many users at the same time. Allocating disk space and keeping
track of who is using which disk blocks is a typical operating system task.

1.2 HISTORY OF OPERATING SYSTEMS

Operating systems have been evolving through the years. In the following sec-
tions we will briefly look at a few of the highlights. Since operating systems have
historically been closely tied to the architecture of the computers on which they
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run, we will look at successive generations of computers to see what their operat-
ing systems were like. This mapping of operating system generations to computer
generations is crude, but it does provide some structure where there would other-
wise be none.

The progression given below is largely chronological, but it has been a bumpy
ride. Each development did not wait until the previous one nicely finished before
getting started. There was a lot of overlap, not to mention many false starts and
dead ends. Take this as a guide, not as the last word.

The first true digital computer was designed by the English mathematician
Charles Babbage (1792–1871). Although Babbage spent most of his life and for-
tune trying to build his ‘‘analytical engine,’’ he nev er got it working properly be-
cause it was purely mechanical, and the technology of his day could not produce
the required wheels, gears, and cogs to the high precision that he needed. Needless
to say, the analytical engine did not have an operating system.

As an interesting historical aside, Babbage realized that he would need soft-
ware for his analytical engine, so he hired a young woman named Ada Lovelace,
who was the daughter of the famed British poet Lord Byron, as the world’s first
programmer. The programming language Ada® is named after her.

1.2.1 The First Generation (1945–55): Vacuum Tubes

After Babbage’s unsuccessful efforts, little progress was made in constructing
digital computers until the World War II period, which stimulated an explosion of
activity. Professor John Atanasoff and his graduate student Clifford Berry built
what is now reg arded as the first functioning digital computer at Iowa State Univer-
sity. It used 300 vacuum tubes. At roughly the same time, Konrad Zuse in Berlin
built the Z3 computer out of electromechanical relays. In 1944, the Colossus was
built and programmed by a group of scientists (including Alan Turing) at Bletchley
Park, England, the Mark I was built by Howard Aiken at Harvard, and the ENIAC
was built by William Mauchley and his graduate student J. Presper Eckert at the
University of Pennsylvania. Some were binary, some used vacuum tubes, some
were programmable, but all were very primitive and took seconds to perform even
the simplest calculation.

In these early days, a single group of people (usually engineers) designed,
built, programmed, operated, and maintained each machine. All programming was
done in absolute machine language, or even worse yet, by wiring up electrical cir-
cuits by connecting thousands of cables to plugboards to control the machine’s
basic functions. Programming languages were unknown (even assembly language
was unknown). Operating systems were unheard of. The usual mode of operation
was for the programmer to sign up for a block of time using the signup sheet on the
wall, then come down to the machine room, insert his or her plugboard into the
computer, and spend the next few hours hoping that none of the 20,000 or so vac-
uum tubes would burn out during the run. Virtually all the problems were simple
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straightforward mathematical and numerical calculations, such as grinding out
tables of sines, cosines, and logarithms, or computing artillery trajectories.

By the early 1950s, the routine had improved somewhat with the introduction
of punched cards. It was now possible to write programs on cards and read them in
instead of using plugboards; otherwise, the procedure was the same.

1.2.2 The Second Generation (1955–65): Transistors and Batch Systems

The introduction of the transistor in the mid-1950s changed the picture radi-
cally. Computers became reliable enough that they could be manufactured and sold
to paying customers with the expectation that they would continue to function long
enough to get some useful work done. For the first time, there was a clear separa-
tion between designers, builders, operators, programmers, and maintenance per-
sonnel.

These machines, now called mainframes, were locked away in large, specially
air-conditioned computer rooms, with staffs of professional operators to run them.
Only large corporations or major government agencies or universities could afford
the multimillion-dollar price tag. To run a job (i.e., a program or set of programs),
a programmer would first write the program on paper (in FORTRAN or assem-
bler), then punch it on cards. He would then bring the card deck down to the input
room and hand it to one of the operators and go drink coffee until the output was
ready.

When the computer finished whatever job it was currently running, an operator
would go over to the printer and tear off the output and carry it over to the output
room, so that the programmer could collect it later. Then he would take one of the
card decks that had been brought from the input room and read it in. If the FOR-
TRAN compiler was needed, the operator would have to get it from a file cabinet
and read it in. Much computer time was wasted while operators were walking
around the machine room.

Given the high cost of the equipment, it is not surprising that people quickly
looked for ways to reduce the wasted time. The solution generally adopted was the
batch system. The idea behind it was to collect a tray full of jobs in the input
room and then read them onto a magnetic tape using a small (relatively) inexpen-
sive computer, such as the IBM 1401, which was quite good at reading cards,
copying tapes, and printing output, but not at all good at numerical calculations.
Other, much more expensive machines, such as the IBM 7094, were used for the
real computing. This situation is shown in Fig. 1-3.

After about an hour of collecting a batch of jobs, the cards were read onto a
magnetic tape, which was carried into the machine room, where it was mounted on
a tape drive. The operator then loaded a special program (the ancestor of today’s
operating system), which read the first job from tape and ran it. The output was
written onto a second tape, instead of being printed. After each job finished, the
operating system automatically read the next job from the tape and began running
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Figure 1-3. An early batch system. (a) Programmers bring cards to 1401. (b)
1401 reads batch of jobs onto tape. (c) Operator carries input tape to 7094. (d)
7094 does computing. (e) Operator carries output tape to 1401. (f) 1401 prints
output.

it. When the whole batch was done, the operator removed the input and output
tapes, replaced the input tape with the next batch, and brought the output tape to a
1401 for printing off line (i.e., not connected to the main computer).

The structure of a typical input job is shown in Fig. 1-4. It started out with a
$JOB card, specifying the maximum run time in minutes, the account number to be
charged, and the programmer’s name. Then came a $FORTRAN card, telling the
operating system to load the FORTRAN compiler from the system tape. It was di-
rectly followed by the program to be compiled, and then a $LOAD card, directing
the operating system to load the object program just compiled. (Compiled pro-
grams were often written on scratch tapes and had to be loaded explicitly.) Next
came the $RUN card, telling the operating system to run the program with the data
following it. Finally, the $END card marked the end of the job. These primitive
control cards were the forerunners of modern shells and command-line inter-
preters.

Large second-generation computers were used mostly for scientific and engin-
eering calculations, such as solving the partial differential equations that often oc-
cur in physics and engineering. They were largely programmed in FORTRAN and
assembly language. Typical operating systems were FMS (the Fortran Monitor
System) and IBSYS, IBM’s operating system for the 7094.

1.2.3 The Third Generation (1965–1980): ICs and Multiprogramming

By the early 1960s, most computer manufacturers had two distinct, incompati-
ble, product lines. On the one hand, there were the word-oriented, large-scale sci-
entific computers, such as the 7094, which were used for industrial-strength nu-
merical calculations in science and engineering. On the other hand, there were the




